Close Menu
Technology Mag

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    I’m an Outdoor Writer. I’m Shopping These 55 Deals From REI’s 4th of July Sale

    July 5, 2025

    Samsung is about to find out if Ultra is enough

    July 5, 2025

    Everything You Can Do in the Photoshop Mobile App

    July 5, 2025
    Facebook X (Twitter) Instagram
    Subscribe
    Technology Mag
    Facebook X (Twitter) Instagram YouTube
    • Home
    • News
    • Business
    • Games
    • Gear
    • Reviews
    • Science
    • Security
    • Trending
    • Press Release
    Technology Mag
    Home » New Superconductive Materials Have Just Been Discovered
    Science

    New Superconductive Materials Have Just Been Discovered

    News RoomBy News RoomJanuary 21, 20253 Mins Read
    Facebook Twitter Pinterest LinkedIn Reddit WhatsApp Email

    The original version of this story appeared in Quanta Magazine.

    In 2024, superconductivity—the flow of electric current with zero resistance—was discovered in three distinct materials. Two instances stretch the textbook understanding of the phenomenon. The third shreds it completely. “It’s an extremely unusual form of superconductivity that a lot of people would have said is not possible,” said Ashvin Vishwanath, a physicist at Harvard University who was not involved in the discoveries.

    Ever since 1911, when the Dutch scientist Heike Kamerlingh Onnes first saw electrical resistance vanish, superconductivity has captivated physicists. There’s the pure mystery of how it happens: The phenomenon requires electrons, which carry electrical current, to pair up. Electrons repel each other, so how can they be united?

    Then there’s the technological promise: Already, superconductivity has enabled the development of MRI machines and powerful particle colliders. If physicists could fully understand how and when the phenomenon arises, perhaps they could engineer a wire that superconducts electricity under everyday conditions rather than exclusively at low temperatures, as is currently the case. World-altering technologies—lossless power grids, magnetically levitating vehicles—might follow.

    The recent spate of discoveries has both compounded the mystery of superconductivity and heightened the optimism. “It seems to be, in materials, that superconductivity is everywhere,” said Matthew Yankowitz, a physicist at the University of Washington.

    The discoveries stem from a recent revolution in materials science: All three new instances of superconductivity arise in devices assembled from flat sheets of atoms. These materials display unprecedented flexibility; at the touch of a button, physicists can switch them between conducting, insulating, and more exotic behaviors—a modern form of alchemy that has supercharged the hunt for superconductivity.

    It now seems increasingly likely that diverse causes can give rise to the phenomenon. Just as birds, bees and dragonflies all fly using different wing structures, materials seem to pair electrons together in different ways. Even as researchers debate exactly what’s happening in the various two-dimensional materials in question, they anticipate that the growing zoo of superconductors will help them achieve a more universal view of the alluring phenomenon.

    Pairing Electrons

    The case of Kamerlingh Onnes’ observations (and superconductivity seen in other extremely cold metals) was finally cracked in 1957. John Bardeen, Leon Cooper, and John Robert Schrieffer figured out that at low temperatures, a material’s jittery atomic lattice quiets down, so more delicate effects come through. Electrons gently tug on protons in the lattice, drawing them inward to create an excess of positive charge. That deformation, known as a phonon, can then draw in a second electron, forming a “Cooper pair.” Cooper pairs can all come together into a coherent quantum entity in a way that lone elections can’t. The resulting quantum soup slips frictionlessly in between the material’s atoms, which normally impede electric flow.

    Bardeen, Cooper, and Schrieffer’s theory of phonon-based superconductivity earned them the physics Nobel Prize in 1972. But it turned out not to be the whole story. In the 1980s, physicists found that copper-filled crystals called cuprates could superconduct at higher temperatures, where atomic jiggles wash out phonons. Other similar examples followed.

    Share. Facebook Twitter Pinterest LinkedIn WhatsApp Reddit Email
    Previous ArticleMicrosoft is letting OpenAI get its own AI compute now
    Next Article RedNote Recruited US Influencers to Promote App Amid TikTok Ban Uncertainty

    Related Posts

    Feeling Hoarse? You Might Have the New ‘Stratus’ Covid Variant

    July 4, 2025

    A European Startup’s Spacecraft Made It to Orbit. Now It’s Lost at Sea

    July 3, 2025

    The Next Acetaminophen Tablet You Take Could Be Made From PET

    July 2, 2025

    How Much Energy Does AI Use? The People Who Know Aren’t Saying

    July 2, 2025

    Space Elevators Could Totally Work—if Earth Days Were Much Shorter

    July 2, 2025

    Methane Pollution Has Cheap, Effective Solutions That Aren’t Being Used

    July 2, 2025
    Our Picks

    Samsung is about to find out if Ultra is enough

    July 5, 2025

    Everything You Can Do in the Photoshop Mobile App

    July 5, 2025

    The Promise and Peril of Digital Security in the Age of Dictatorship

    July 5, 2025

    The Ploopy Knob is an open-source control dial for your PC

    July 4, 2025
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo
    Don't Miss
    News

    Laid-off workers should use AI to manage their emotions, says Xbox exec

    By News RoomJuly 4, 2025

    The sweeping layoffs announced by Microsoft this week have been especially hard on its gaming…

    Despite Protests, Elon Musk Secures Air Permit for xAI

    July 4, 2025

    This Is Why Tesla’s Robotaxi Launch Needed Human Babysitters

    July 4, 2025

    Fairphone 6 gets a 10/10 on repairability

    July 4, 2025
    Facebook X (Twitter) Instagram Pinterest
    • Privacy Policy
    • Terms of use
    • Advertise
    • Contact
    © 2025 Technology Mag. All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.